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An active-passive networked multiagent system consists of agents subject to inputs
(active agents) and agents without any inputs (passive agents). Specifically, this class of
networked multiagent systems utilizes a novel form of dynamic consensus filters, where the
states of all agents converge to the average of the exogenous inputs applied only to the active
agents, and it has broad practical applications including, for example, real-time situational
awareness and data gathering using sensor networks and distributed control of multirobot
systems. In this paper, we focus on active-passive networked multiagent systems that
are subject to constant and/or harmonic exogenous disturbances. In particular, in order
to improve resiliency of this class of networked multiagent systems under such persistent
disturbances that can exist in adverse environments, we propose a disturbance observer-
based approach and show that the proposed methodology effectively suppresses the effects
of exogenous disturbances. In addition to the rigorous, system-theoretic stability and
performance analysis of the proposed approach, we also show its efficacy through illustrative
numerical examples.

I. Introduction

In recent years, with the rapid development of technology in computing, sensing, and communication,

operations that require deploying a large number of autonomous vehicles and microsensors, have become

feasible. Through communicating with each other over a network, those vehicles and/or sensors can work and

coordinate as a whole system to achieve complicated tasks. These systems are known as networked multiagent

systems and have widespread applications in many fields ranging from civilian operations like intelligent

highways, air traffic control, geographical sampling,and military operations like battlefield environments,

cooperatively transport large objects, and respond to natural disasters (see, for example, Refs. 1–5, and

references therein).

To achieve global tasks, agents need to agree upon some certain quantities of interested. The average

consensus in which agents converge to the average of initial values, is a well-studied class of leaderless

networks (see, for example, Refs. 6–9, and references therein). However, this class of leaderless networks

is not sufficient in applications to dynamic environments; for example, when each agent needs to reach
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an agreement on distance measurements between static sensors and a moving target. Motivated from this

standpoint, Refs. 10–15 consider the dynamic (average) consensus problem that provides the necessary

framework for a class of network applications to dynamic environments, where all agents are subject to

inputs and each agent tracks the average of those inputs. Yet, it should be noted that it can be of practical

importance to reach the average of the inputs only applied to a specific set of agents in the network such as

a distributed network scenario when only a set of agents that are close to a target of interest can sense this

target, and hence, only that set of agents are subject to inputs.

Our earlier work documented in Refs. 16 and 17 addresses this problem by introducing an active-passive

networked multiagent system, which consists of agents subject to inputs (active agents) and agents without

any inputs (passive agents). Specifically, this new class of networked multiagent systems utilizes a novel

form of dynamic consensus filters, where the states of all agents converge to the average of the exogenous

inputs applied only to the active agents, and it has broad practical applications including, for example, real-

time situational awareness and data gathering using sensor networks and distributed control of multirobot

systems.

In this paper, we focus on active-passive networked multiagent systems that are subject to constant

and/or harmonic exogenous disturbances. In particular, in order to improve resiliency of this class of net-

worked multiagent systems under such persistent disturbances that can exist in adverse environments,18–20

we propose a disturbance observer-based approach and show that the proposed methodology effectively

suppresses the effects of exogenous disturbances. Stability and performance of the proposed approach is rig-

orously analyzed using tools and methods from systems theory and Lyapunov methods. Several illustrative

numerical examples are provided to demonstrate the efficacy of the proposed disturbance observer-based

approach to active-passive networked multiagent systems.

The organization of this paper is as follows. In Section II, we introduce the notation and necessary

lemmas for the main results of this paper. Section III overviews the active-passive networked multiagent

system documented in Refs. 16 and 17. Proposed disturbance observer-based approach to this class of

networked multiagent systems is given in Section IV, where this section includes stability and performance

analysis of this approach. Finally, illustrative numerical examples are given in Section V and concluding

remarks are summarized in Section VI.

II. Notation and Mathematical Preliminaries

The notation used in this paper is fairly standard. Specifically, R denotes the set of real numbers,

Rn denotes the set of n × 1 real column vectors, Rn×m denotes the set of n × m real matrices, R+ de-

notes the set of positive real numbers, Rn×n+ (resp., Rn×n
+ ) denotes the set of n× n positive-definite (resp.,

nonnegative-definite) real matrices, Sn×n+ (resp., Sn×n+ ) denotes the set of n× n symmetric positive-definite

(resp., symmetric nonnegative-definite) real matrices, 0n denotes the n × 1 vector of all zeros, 1n denotes

the n× 1 vector of all ones, 0n×n denotes the n× n zero matrix, and In denotes the n× n identity matrix.

In addition, we write (·)T for transpose, (·)−1 for inverse, (·)† for generalized inverse, ‖ · ‖2 for the Euclidian

norm, ‖·‖F for the Frobenius norm, λmin(A) (resp., λmax(A)) for the minimum (resp., maximum) eigenvalue

of the Hermitian matrix A, λi(A) for the i-th eigenvalue of A (A is symmetric and the eigenvalues are ordered
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from least to greatest value), diag(a) for the diagonal matrix with the vector a on its diagonal.

Next, we recall some basic notions from graph theory (see Refs. 6 and 21 for details). In the multiagent

literature, graphs are broadly adopted to encode interactions in networked multiagent systems. An undirected

graph G is defined by a set VG = {1, . . . , n} of nodes and a set EG ⊂ VG × VG of edges. If (i, j) ∈ EG , then

the nodes i and j are neighbors and the neighboring relation is indicated with i ∼ j. The degree of a node is

given by the number of its neighbors. Letting di be the degree of node i, then the degree matrix of a graph

G, D(G) ∈ Rn×n, is given by D(G) , diag(d), d = [d1, . . . , dn]T. A path i0i1 . . . iL is a finite sequence of

nodes such that ik−1 ∼ ik, k = 1, . . . , L, and a graph G is connected if there is a path between any pair of

distinct nodes. The adjacency matrix of a graph G, A(G) ∈ Rn×n, is given by

[A(G)]ij ,

 1, if (i, j) ∈ EG ,

0, otherwise.
(1)

The Laplacian matrix of a graph, L(G) ∈ Sn×n+ , playing a central role in many graph theoretic treatments

of multiagent systems, is given by

L(G) , D(G)−A(G). (2)

The spectrum of the Laplacian of a connected, undirected graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λn(L(G)), (3)

with 1n as the eigenvector corresponding to the zero eigenvalue λ1(L(G)) and L(G)1n = 0n and eL(G)1n = 1n.

Throughout this paper, we model a given multiagent system by a connected, undirected graph G, where

nodes and edges represent agents and inter-agent communication links, respectively.

Lemma 116 . Let K = diag(k), k = [k1, k2, . . . , kn]T, ki ∈ R+, i = 1, . . . , n, and assume that at least

one element of k is nonzero. Then, for the Laplacian of a connected, undirected graph,

F(G) , L(G) +K ∈ Sn×n+ , (4)

and det(F(G)) 6= 0.

Lemma 222 . The Laplacian of a connected, undirected graph satisfies L(G)L†(G) = In − 1
n1n1T

n .

III. Overview of Active–Passive Networked Multiagent Systems

In this section, we briefly overview the active-passive networked multiagent systems approach introduced

in 16 and 17. Specifically, we consider a system of n agents exchanging information among each other using

their local measurements according to a connected, undirected graph G. In addition, consider that there

exists m ≥ 1 exogenous inputs that interact with this system.

Definition 1. If agent i, i = 1, . . . , n, is subject to one or more exogenous inputs (resp., no exogenous

inputs), then it is an active agent (resp., passive agent).
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a) b) c) 

Figure 1. An active-passive networked multiagent system with a) two non-overlapping non-isolated inputs,
b) two overlapping non-isolated inputs, and c) two non-overlapping inputs, where one of them is isolated and
the other one is non-isolated (lines denote communication links, gray circles denote active agents, white circles
denote passive agents, and shaded areas denote the exogenous inputs interacting with this system).17

Definition 2. If an exogenous input interacts with only one agent (resp., multiple agents), then it is an

isolated input (resp., non-isolated input) (see Figure 1 adopted from Ref. 17).

The approach presented in Refs. 16 and 17 deals with the problem of driving the states of all (active

and passive) agents to the average of the applied exogenous inputs. For this purpose, the following integral

action-based distributed control algorithm is proposed

ẋi(t) = −α
∑
i∼j

(
xi(t)− xj(t)

)
+
∑
i∼j

(
ξi(t)− ξj(t)

)
− α

∑
i∼h

(xi(t)− ch(t)), xi(0) = xi0, (5)

ξ̇i(t) = −γ
[∑
i∼j

(
xi(t)− xj(t)

)
+ σξi(t)

]
, ξi(0) = ξi0, (6)

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . , n, respectively,

ch(t) ∈ R, h = 1, . . . ,m, denotes an exogenous input sensed by this agent, α ∈ R+, and γ ∈ R+. Note

that i ∼ h notation indicates the exogenous inputs that an agent is subject to, which is similar to the i ∼ j
notation indicating the neighboring relation between agents.

Remark 1. The results of Refs. 16 and 17 show that the states of all agents converge to (resp., converge

to an adjustable neighborhood of) the average of the constant (resp., time-varying) inputs applied to the

active agents under the assumption that no disturbances act on the state of any agents. For further insights

regarding (5) and (6), see Examples 1, 2, 3, 4, and 5 of Ref. 17. In addition, we refer to Section VI of Ref.

17 that compare (5) and (6) with other existing approaches to networked multiagent systems.

IV. Resilient Control of Active-Passive Networked Multiagent Systems

using Disturbance Observer

In this section, we introduce a disturbance observer-based approach for active-passive networked multi-

agent systems to achieve resilience against constant and harmonic exogenous disturbances.
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A. Problem Formulation

Consider the proposed resilient active–passive networked multiagent system algorithm subjected to exogenous

disturbances given by

ẋi(t) = −α
∑
i∼j

(
xi(t)− xj(t)

)
+ γ

∑
i∼j

(
ξi(t)− ξj(t)

)
− α

∑
i∼h

(xi(t)− ch(t)) + di(t)− d̂i(t), xi(0) = xi0, (7)

ξ̇i(t) = −γ
[∑
i∼j

(
xi(t)− xj(t)

)
+ σξi(t)

]
, ξi(0) = ξi0, (8)

where xi(t) ∈ R and ξi(t) ∈ R denote the state and the integral action of agent i, i = 1, . . . , n, respectively,

di(t) ∈ R is the exogenous constant and/or harmonic disturbances affecting the algorithm, d̂i(t) ∈ R is the

disturbance estimate to be defined, and ch(t) ∈ R, h = 1, . . . ,m, denotes inputs sensed by active agents,

where α ∈ R+, and γ ∈ R+. It is reasonable to assume that the applied input ch(t) and its time derivative

ċh(t) are bounded. Note that i ∼ h notation indicates the exogenous inputs that an agent is subject to,

which is similar to the i ∼ j notation indicating the neighboring relation between agents.

To suppress the effects of exogenous constant and/or harmonic disturbances for closely synchronizing

agent outputs, we now make the following assumptions.

Assumption 1. The exogenous disturbances are generated by linear exogenous systems23

{
ẇi(t) = Aiwi(t), wi(0) = wi0, (9)

di(t) = Ciwi(t), (10)

where wi(t) ∈ Rp is the internal state of exogenous disturbance affecting agent i, and Ai ∈ Rp×p and

Ci ∈ R1×p are coefficient matrices. In addition, the system given by (9) and (10) is considered neutral

stable, which implies that the disturbance is persistent.23

Assumption 2. The dynamics given by (9) and (10) is observable.

Throughout this paper, Ai and Ci are treated as known matrices based on some knowledge about the

disturbance on the networked multiagent system. Next, for brevity, we define

fi(t) , −α
∑
i∼j

(
xi(t)− xj(t)

)
+ γ

∑
i∼j

(
ξi(t)− ξj(t)

)
− α

∑
i∼h

(xi(t)− ch(t)), (11)

to be the disturbance free system dynamics, and hence, (7) can be equivalently rewritten as

ẋi(t) = fi(t) + di(t)− d̂i(t). (12)

Now, utilizing the results in Ref. 23, we propose the agent-wise disturbance observers for the active–
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passive networked multiagent system given by (7) and (8) as


żi(t) = (Ai −KiCi)

(
zi(t) +Kixi(t)

)
−Ki

(
fi(t)− d̂i(t)

)
, zi(0) = zi0 (13)

ŵi(t) = zi(t) +Kixi(t), (14)

d̂i(t) = Ciŵi(t), (15)

where zi(t) ∈ Rp is internal state variables of the agent-wise disturbance observers, Ki ∈ Rp×1 is the observer

gain such that Ai −KiCi is Hurwitz, and ŵi(t) ∈ Rp is the agent-wise estimate of wi(t).

This concludes the setup of our problem. In the next section, we present the stability and performance

guarantees for the system given by (7), (8), (13), (14), and (15).

B. Stability and Performance Analysis

In this section, we analyze the stability and performance of the active–passive networked multiagent system

given by (7),(8), (13), (14), and (15). Specially, we first present and analyze the disturbance estimator error

dynamics. We then demonstrate the stability of the disturbed active–passive networked multiagent system

under the disturbance estimator given by (13), (14), and (15). Finally, we characterize ultimate performance

bound for the overall closed-loop system.

To begin with, consider the disturbance estimator error given by

µi(t) , wi(t)− ŵi(t). (16)

The time derivative of (16) can be given by

µ̇i(t) = ẇi(t)− ˙̂wi(t)

= ẇi(t)− żi(t)−Kiẋi(t)

= ẇi(t)− (Ai −KiCi)
(
zi(t) +Kixi(t)

)
+Ki

(
fi(t)− d̂i(t)

)
−Ki

(
fi(t) + di(t)− d̂i(t)

)
= Aiwi(t)− (Ai −KiCi)ŵi(t)−Kidi(t)

= (Ai −KiCi)µi(t), µi(0) = µi0. (17)

Note that, di(t) − d̂i(t) = Ci
(
ωi(t) − ω̂i(t)

)
= Ciµi(t). Note also that lim

t→∞

(
di(t) − d̂i(t)

)
= 0, when

lim
t→∞

µi(t) = 0.

Now, we analyze the active–passive networked multiagent system dynamics given by (7) and (8). For

this purpose, let

x(t) ,
[
x1(t), x2(t), . . . , xn(t)

]T∈ Rn, (18)

ξ(t) ,
[
ξ1(t), ξ2(t), . . . , ξn(t)

]T∈ Rn, (19)

c(t) ,
[
c1(t), c2(t), . . . , cm(t), 0, . . . , 0

]T∈ Rn, (20)

where we assume m ≤ n for the ease of notation without loss of generality.17 We can write (7) and (8) in
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the compact form as

ẋ(t) = −αF(G)x(t) + γL(G)ξ(t) + αK2c(t) + (In ⊗ C)µ(t), x(0) = x0, (21)

ξ̇(t) = −γL(G)x(t)− γσξ(t), ξ(0) = ξ0, (22)

where µ(t) =
[
µT

1 (t), µT
2 (t), . . . , µT

n (t)
]T∈ Rnp, L(G) ∈ Sn×n+ is the Laplacian matrix, and F(G) , L(G) +

K1 ∈ Sn×n+ as a consequence of Lemma 1 with

K1 , diag([k1,1, k1,2, . . . , k1,n]T) ∈ Sn×n+ , (23)

with k1,i ∈ Z+ denoting the number of the exogenous inputs applied to agent i, i = 1, . . . , n, and

K2 ,


k2,11 k2,12 · · · k2,1n

k2,21 k2,22 · · · k2,2n

...
...

. . .
...

k2,n1 k2,n2 · · · k2,nn

 ∈ Rn×n, (24)

with k2,ih = 1 if the exogenous input ch(t), h = 1, . . . ,m, is applied to agent i, i = 1, . . . , n, and k2,ih = 0

otherwise. In addition, note that k1,i =
∑n
j=1 k2,ij . We refer the reader to Refs. 16 and 17 for detailed

examples illustrating the construction of K1 and K2 matrices.

Next, we define

δ(t) , x(t)− ε(t)1n ∈ Rn, (25)

ε(t) ,
1T
nK2c(t)

1T
nK21n

∈ R, (26)

where δ(t) is the error between xi(t), i = 1, . . . , n, and the average of the applied inputs ε(t).

Using (21), (22), in (25), the time derivative of the state error can be given by

δ̇(t) = −αF(G)δ(t) + γL(G)ξ(t)− αLcK2c(t) + (In ⊗ C)µ(t) + p1(t), (27)

where p1(t) , −ε̇1n and

Lc ,
K11n1T

n

1T
nK21n

− In. (28)

In addition, consider

e(t) , ξ(t)− α

γ
L†(G)LcK2c(t) ∈ Rn, (29)
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and note that 1T
nLc(t) = 0. The closed loop system error dynamics can now be given by

δ̇(t) = −αF(G)δ(t) + γL(G)e(t) + (In ⊗ C)µ(t) + p1(t), (30)

ė(t) = −γLδ(t)− γσe(t) + p2(t), (31)

where p2(t) , −αL†LcK2

(
σc(t) + 1

γ ċ(t)
)
. Since c(t) and ċ(t) are bouded by definition, one can write

‖p1(t)‖2 ≤ p∗1 , nε̇
∗, (32)

‖p2(t)‖2 ≤ p∗2 , α‖L†LcK2‖F c̄∗, (33)

with ‖ε̇(t)‖2 ≤ ε̇∗2 and ‖σc(t) + 1
γ ċ(t)‖2 ≤ c̄

∗.

We are now ready to state the main result of this paper.

Theorem 1. Consider the active–passive network multiagent system given by (7) and (8), where agents

are subjected to disturbance and exchange information using local measurements according to a connected,

undirected graph G. Under the disturbance observer architecture given by (13), (14), and (15) subject to

Assumptions 1 and 2, the closed-loop error dynamics defined by (30) and (31) are uniformly bounded.

Proof. We begin by noting that the disturbance estimator error dynamics given by (17) can be written

in the compact form as

µ̇(t) = Āµ(t), Ā ,


A1 −K1C1 0 · · · 0

0 A2 −K2C2 · · · 0
...

...
. . .

...

0 0 · · · An −KnCn

 (34)

Note that, since each (Ai − KiCi) is Hurwitz, then so is Ā. Therefore, the trajectory of µ(t) satisfies

µ(t) = eĀtµ(0). From this, note also that lim
t→∞

µ(t) = 0 and ‖µ(t)‖2 ≤ µ∗ , ‖µ(0)‖2.

Next, consider the Lyapunov function candidate given by

V (δ, e) =
1

2
δTδ +

1

2
eTe, (35)

Note that, V (0, 0) = 0 and V (δ, e) > 0 for all (δ, e) 6= 0. Taking the time derivative of (35) along the

trajectories of (30) and (31), we have

V̇ (·) = −αδT(t)F(G)δ(t) + δT(t)(In ⊗ C)µ(t) + δT(t)p1(t)− γσeT(t)e(t) + eT(t)p2(t)

≤ −αλmin
(
F(G)

)
‖δ(t)‖22 + ‖δ(t)‖2‖In ⊗ C‖Fµ∗ + ‖δ(t)‖2p∗1 − γσ‖e(t)‖22 + ‖e(t)‖2p∗2

≤ −αλmin
(
F(G)

)
‖δ(t)‖2

(
‖δ(t)‖2 − φ1

)
− γσ‖e(t)‖2

(
‖e(t)‖2 − φ2

)
(36)
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where

φ1 ,
(
‖In ⊗ C‖Fµ∗ + p∗1

)
/αλmin

(
F(G)

)
, (37)

φ2 , p∗2/(γσ). (38)

Note that V̇ (·) ≤ 0 when ‖δ‖2 ≥ φ1 and ‖e(t)‖2 ≥ φ2, and hence the closed-loop error dynamics given

by (30) and (31) are uniformly bounded. �

The next result is now immediate that characterizes ultimate performance bound for the error between

xi(t), i = 1, . . . , n, and the average of the apply inputs ε(t).

Corollary 1. Consider the active–passive network multiagent system given by (7) and (8), where agents

are subjected to disturbance and exchange information using local measurements according to a connected,

undirected graph G. Then the ultimate performance bound of δ(t) for t ≥ T is given by

‖δ(t)‖22 ≤

(
‖In ⊗ C‖Fµ∗ + nε̇∗

)2

α2λ2
min

(
F(G)

) +
α2

σ2

(‖L†LcK2‖F c̄∗)2

γ2
(39)

Proof. From the proof of Theorem 1, V (·) ≤ 0 outside the compact set given by

S ,
{

(δ(t), e(t)) : ‖δ(t)‖2 ≤ φ1

}
∩
{

(δ(t), e(t)) : ‖e(t)‖2 ≤ φ2

}
. (40)

Therefore, the evolution of V (δ(t), e(t)) is upper bounded by

V (δ(t), e(t)) ≤ max
(δ(t),e(t))∈S

V (δ(t), e(t)) =
1

2

(
φ2

1 + φ2
2

)
, t ≥ T (41)

Using 1
2δ(t)

Tδ(t) ≤ V (δ(t), e(t)) in (41), then (39) is immediate. �

Remark 2. Corollary 1 implies that if we judiciously choose α, γ and σ such that 1
α2 and α2

σ2γ2 are small,

then (39) is small for t ≥ T . Hence, the distance between xi(t), i = 1, . . . , n, and the average of the applied

inputs ε(t) can be made arbitrarily small in the presence of exogenous disturbances.

Remark 3. If the input c(t) is a vector of constants, the bounds in (37) and (38) become

φ1 , ‖(In ⊗ C)‖Fµ∗/
(
αλmin

(
F(G)

))
, (42)

φ2 , α‖L†LcK2‖‖c‖2/γ, (43)

which are less conservative.

Remark 4. The disturbance observer given by (13), (14), and (15) can attenuate constant and harmonic

disturbances with known frequency but unknown amplitude and phase.

V. Numerical Examples

In this section, we first demonstrate the efficacy of the proposed disturbance observer architecture in

Section IV for active–passive networked multiagent system with time-varying exogenous inputs. We then
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consider a two-level control hierarchy of active–passive networked multiagent system in the second example.

Figure 2. Communication graph of 25 agents (lines denote communication links, gray circles denote active
agents, and white circles denote passive agents ).

Example 1: In this example, we consider a network system with 5 active agents and 20 passive agents

exchanging information under the connected, undirected graph G as shown in Figure 2. Active agents are

subjected to isolated time-varying exogenous inputs given by c1(t) = 0.3075 + sin(0.5t), c2(t) = −1.2571 +

sin(t), c3(t) = −0.8655 + sin(1.5t), c4(t) = −0.1765 + sin(2t) and c5(t) = 0.7914 + sin(2.5t). Let all agents

have arbitrary initial conditions and ξi(0) = 0, i = 1, . . . , n. A disturbance in the form di = bi sin(2t + pi)

is injected to each agent where bi ∈ [−26, 40] and pi ∈ [−3.5, 4.5] are generated randomly for i = 1, . . . , n.

Figure 3 shows the response of the networked multiagent system given by (7) and (8) with α = 30, γ = 40

0 5 10 15

−1

−0.5

0

0.5

x
i
(t
)

t [sec]

Figure 3. Response of the networked multiagent system under disturbance without implementing disturbance
observer (solid lines denote agent states and dashed line denotes the average of applied time–varying inputs).

and σ = 0.1/γ, under disturbance without implementing disturbance observer.
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For the disturbance observer given by (13), (14), and (15), without loss of generality, we choose

A =

 0 2

−2 0

 , (44)

C = [1 0] for all agents, i.e., Ai = A and Ci = C, i = 1, . . . , 25 so that (A,C) is observable, and with

Ki = K = [67.5 181.5]T, the matrix (A−KC) is Hurwitz.

Under the disturbance observer given by (13), (14), and (15), as expected from Theorem 1, all agents

closely track the average of applied time-varying exogenous inputs as presented in Figure 4. Figure 5 also

shows that the disturbance estimation error approaches to a neighborhood of zero.

0 5 10 15

−1

−0.5

0

0.5

x
i
(t
)

t [sec]

Figure 4. Response of the networked multiagent system under disturbance with implementing disturbance
observer (solid lines denote agent states and dashed line denotes the average of applied time–varying inputs).

Example 2: In this example, we consider a network system with 2 active agents and 3 passive agents

exchanging information under the connected, undirected graph G as depicted in Figure 6. The dynamics of

each agent is given by

ζ̇i(t) = Amζi(t) +Bmvi(t), ζi(0) = ζi0, i = 1, 2, . . . , 5, t ≥ 0 (45)

where ζi(t) = [ζxi ζyi ζzi ]
T ∈ R3, t ≥ 0, is the state vector of agent i, with ζxi , ζyi , ζzi , t ≥ 0, representing

the position, velocity and acceleration, respectively. In addition, vi(t) is the control input, and

Am =


0 3 0

0 0 3

0 0 0

 , Bm =


0

0

10

 . (46)

We propose a two-level control hierarchy,24 which consists of a lower level controller for command tracking

and a higher level controller for position consensus of the five agents given by (45). For the lower level
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−1
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Figure 5. The difference between the estimated disturbance and the disturbance.

Figure 6. Communication graph of 5 agents (lines denote communication links, gray circles denote active
agents, and white circles denote passive agents ).

controller, let xi(t), i = 1, 2, . . . , 5, t ≥ 0, be the guidance command generated by (7), (8) , (13), (14), and

(15), and let si(t) denotes the integrator state such that

ṡi(t) = Emζi(t)− xi(t), si(0) = qi0, i = 1, 2, . . . , 5, t ≥ 0 (47)

where Em = [1 0 0]. We define the augmented state as ζ̄i(t) , [ζi(t)
T si(t)]

T. From (45) and (47), we

have

˙̄ζi(t) = Āmζ̄i(t) + B̄m1vi(t) + B̄m2xi(t), ζ̄i(0) = ζ̄i0, i = 1, 2, . . . , 5, t ≥ 0 (48)

where

Ām =

Am 0

Em 0

 , B̄m1 =

Bm
0

 , B̄m2 =

 0

−I

 . (49)
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Let the control input be given by

vi(t) = −Kmζ̄i(t), (50)

where Km = [2.2545 3.2699 1.9905 1.4142] is designed based on an optimal linear quadratic regulator.

For the higher level controller, we assume that each agent is subjected to a disturbance in the form

di = bi sin(2t + pi) where bi and pi are generated randomly for i = 1, . . . , 5. Through the active–passive

network consensus (7), (8) and disturbance observer architecture given by (13), (14), and (15), xi(t) is

generated.

We first consider active agents are subjected to random and isolated constant exogenous inputs. Figure

7 shows the responses of the higher level commands and the positions of lower level controllers under dis-

turbance without implementing disturbance observer. Figure 8 shows that when the disturbance observer is

implemented, the higher level controllers are able to attenuate the disturbance and converge to the average

of applied constant exogenous inputs while the lower level controllers are able to track the higher level.

Figure 7. Response of the networked multiagent system under disturbance without implementing distur-
bance observer (solid lines denote higher level commands, dashed line denotes the average of applied constant
exogenous inputs of the higher level controller and dashdot lines denote the positions of lower level controllers).

Figure 8. Response of the networked multiagent system under disturbance with implementing disturbance ob-
server (solid lines denote higher level commands, dashed line denotes the average of applied constant exogenous
inputs of the higher level controller and dashdot lines denote the positions of lower level controllers).
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Now, we consider active agents are subjected to time-varying exogenous inputs given by c1(t) = −0.59 +

0.5 sin(0.125t), c2(t) = 2.0 + 0.5 sin(0.25t). Figure 9 shows the responses of both higher and lower level

controllers under disturbance without implementing disturbance observer. Again, Figure 10 shows that when

the disturbance observer is implemented, the higher level controllers are able to attenuate the disturbance

and converge to the average of applied time-varying exogenous inputs while the lower level controllers are

able to track the higher level closely. Note that the ability to track the guidance command of the lower level

depends on the bandwidth of the system.

Figure 9. Response of the networked multiagent system under disturbance without implementing disturbance
observer (solid lines denote higher level commands, dashed line denotes the average of applied time-varying
exogenous inputs of the higher level controller and dashdot lines denote the positions of lower level controllers).

Figure 10. Response of the networked multiagent system under disturbance with implementing disturbance
observer (solid lines denote higher level commands, dashed line denotes the average of applied time-varying
exogenous inputs of the higher level controller and dashdot lines denote the positions of lower level controllers).

VI. Conclusion

Active-passive networked multiagent systems utilize a novel form of dynamic consensus filters, and they

have broad practical applications including, for example, real-time situation awareness and data gathering

using sensor networks and distributed control of multirobot systems. For contributing our previous studies

in this class of networked multiagent systems, we considered a practical scenario, where active and passive
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agents are subject to exogenous constant and/or harmonic disturbances. Specifically, for improving resiliency

and performance of this class of networked multiagent systems under such persistent disturbances, we utilized

a disturbance observer-based approach and showed that the proposed methodology can effectively suppress

the effects of exogenous disturbances. Illustrative numerical examples showed the efficacy of the proposed

methodology.
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