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This paper proposes a dynamic information fusion framework for sensor networks with
the integration of local observers, value of information, and active-passive consensus filters
as well as a layer to monitor the validity of information. Specifically, we consider a process of
interest consisting of multiple subprocesses (for example, multiple targets to be monitored).
The heterogeneity in the sensor networks is considered and handled in many aspects such
as nodes are allowed to have different sensing capabilities, different information node roles
(active and/or passive; that is, a node can be subject to observations of the process or to
no observation), and different weights on information (value of information). In addition,
the information validity monitor layer allows operators to evaluate the reliability of the
fused information based on the local feedbacks received from the sensor network. Several
illustrative numerical examples are also presented to illustrate the efficacy and discuss the
practical aspects of the proposed dynamic information fusion framework.

I. Introduction

With the remarkable technological developments in the past two decades, advanced devices such as

autonomous mobile robots, and sensors have become affordable to deploy in a large quantities. This also

leads to a need in the development of advanced algorithms to gather and integrate information as well as

to control such multiagent systems. In particular, dynamic information fusion in sensor networks plays an

important roles in a wide array of applications for both scientific, civilian and military purposes. One of

the main challenges in dynamic information fusion is the heterogeneity of sensor networks. The sources

of this heterogeneity include the differences in sensor modalities, the quality of sensing information (value

of information), and the information roles of nodes (active and passive; that is, a node can be subject to

observations of the process or to no observation), to name but a few examples.

While information roles of nodes and active-passive consensus filter are recently investigated in Refs.

1–5 and references therein, these results often consider scalar integrator dynamics and/or lack a complete
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structure to process the local information before the fusion such as utilizing local observers to extract more

information and assigning weights on information. Although the distributed algorithms in Refs. 6 and 7

consider the differences in sensor modalities, the information roles of nodes in these results are not explicitly

discussed. Several works such as Refs. 8–10 consider the value of information, yet information roles of nodes

and/or heterogeneous modalities are not considered. Nonetheless, the aforementioned works do not have a

direct architecture to quantify and evaluate the quality of fused information of sensor networks in real-time.

The contribution of this paper is to propose a dynamic information fusion framework for sensor networks

with the integration of local observers, value of information, and active-passive consensus filters as well as

a layer to monitor the validity of information; see Figure 1. Specifically, we consider a process of interest

consists of multiple subprocesses (e.g, multiple targets to be monitored). The heterogeneity in the sensor

networks is considered and handled in many aspects such as nodes are allowed to have different sensing

capabilities, different information node roles (active and passive), and different weights on information (value

of information). In addition, the information validity monitor layer allows operators to evaluate the reliability

of the fused information based on the local feedbacks received from the sensor network. Several illustrative

numerical examples are also presented to illustrate the efficacy and discuss the practical aspects of the

proposed dynamic information fusion framework.

Local 
Observer

Value of 
Information

Active Passive 
Consensus Filter

Information 
Validity Monitor 

Layer

Measurement 
yi(t) zi(t) Mizi(t)

Information from neighboring nodes

xi(t)

qi(t)

Not available for 
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Figure 1. The dynamic information fusion framework of an individual node with the integration of a local
observer, value of information, active-passive consensus filter, and information validity monitor layer.

The organization of this paper is as follows. In Section II, we present the setup of the process, the sensor

network, the structure of the local observers, and the value of information. In Section III, the active-passive

consensus filter with fixed information node roles is introduced and analyzed, as an intermediate result.

The main result of this paper is then presented in Section IV, which is a practical extension of the result

of Section III to the time-varying case. The information validity monitor layer is presented in Section V

and illustrative numerical examples together with some discussions are provided in Section VI. Finally,

concluding remarks are summarized in Section VII. For readers, we refer to Appendix A for the notations,

mathematical preliminaries, and necessary lemmas for the results of this paper.

2 of 24

American Institute of Aeronautics and Astronautics



II. Problem Setup

A. Considered Process and the Sensor Network

Consider a large-scale process of interest with the dynamics given by

ż = Az(t), z(0) = z0, (1)

where z(t) ∈ Rn denotes the unmeasurable process state vector,

A = block−diag(A1, A2, . . . , Am) ∈ Rn×n, (2)

is the system matrix with Ah ∈ Rnh×nh for h = 1, 2, . . . ,m and nh ≤ n,
∑m
h=1 nh = n. While (1) adopts a

simple structure in order to allow us to directly focus on the overarching contribution of this paper (i.e., a

new dynamic information fusion framework), it can represent linear or linearized, controlled or uncontrolled

process dynamics. Note that the contribution of this paper can be readily extended to the cases, where (1)

include measurement noise and/or uncertainties resulting from modeling efforts. Furthermore, the block-

diagonal structure of the system matrix A indicates that the process can be decomposed into m subprocesses.

An example of such a process is independent multiple targets that need to be monitored on an observation

field, which presents the overarching application focus of this paper.

Next, consider a sensor network with N nodes exchanging information among each other using their local

measurements through a connected, undirected graph G. If a node i, i = 1, . . . , N has no observations, then

we say that it is a “passive node”. On the other hand, if a node i, i = 1, . . . , N is subject to observations of

process (1) given by

yi(t) = gCiz(t), (3)

where yi(t) ∈ Rp denotes the measurable process output for node i, i = 1, . . . , N , and gCi ∈ Rp×n denotes

the system output matrix with g is the sensor’s category defined below, then we say that node i is an “active

node”.

Remark 1. Here, we consider that the sensors can have different sensing capabilities and can be cate-

gorized into multiple categories. We define a Category I sensor as ICi =
[
0 . . . jC̄i . . . 0

]
such

that jC̄i ∈ Rp×nj and the pair (Aj ,
jC̄i) is detectable, where j ∈ Z+ denotes the corresponding subpro-

cess that node i can sense, and j ∈ [1,m] (e.g., a Category I sensor can observe a specific subprocess).

Next, we define a Category II sensor as a combination of two or more Category I sensors, for example,

IICi =
[
0 . . . jC̄i . . . kC̄i . . . 0

]
such that jC̄i ∈ Rp×nj , kC̄i ∈ Rp×nk and the pairs (Aj ,

jC̄i),

(Ak,
kC̄i) are detectable, where j, k ∈ Z+ and j, k ∈ [1,m] (e.g., a Category II sensor can simultaneously

observe several subprocesses). We also define a Category III sensor as a generalized sensor that does not pos-

sess a detectable pair (or an observable pair), for example, IIICi =
[
0 . . . j c̄i . . . k c̄i . . . 0

]
, where

j c̄i,
k c̄i ∈ R, j, k ∈ Z+ and j, k ∈ [1, n] (e.g, a Category III sensor can observe a state of a subprocess or

several states of several subprocesses). A sensor’s category is not necessarily limited to the ones that we
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introduce above but can be extended to the mixtures of those categories as well.

B. Local Observers and the Value of Information Matrix

We first introduce here the construction of local observers based on the local measurements yi(t). Depending

on the sensor’s category, the value of information matrix is then constructed. Because of the diagonal

structure of the system matrix A, we can construct the local observer vector zi(t) ∈ Rn for the process based

on the type and capability of each active node i. Specifically, if the sensor is in either Category I or II, a

subprocess state can be estimated by the local (Luenberger) observer given by

ṡi(t) = Ahsi(t) + hLi(yi(t)− hC̄isi(t)), si(0) = si0, (4)

where h is an index of a corresponding subprocess of A that node i can observe, si ∈ Rnh is the local state

estimate of a subprocess Ah, hC̄i is the output matrix corresponding to states observed by node i on the

subprocess Ah, and hLi ∈ Rnh×p is the corresponding local observer gain for node i. From this point, the

local observer of node i, zi(t) ∈ Rn can be constructed, for example zi(t) ,
[
0 . . . sT

i (t) . . . 0

]T
, where

the position of si(t) is corresponding to the state of the subprocess Ah in z(t). If the sensor is in Category

III, there is no theoretical need for a local observer. Therefore, zi(t) can be constructed directly from yi(t)

as zi(t) ,
[
0 . . . yi(t)

T . . . 0

]T
, where the position of yi(t) elements are corresponding to the substate

of z(t) that node i can sense.

Based on the sensor’s type and capability, in addition, the value of information matrix has a natural

diagonal structure in the form given by

Mi , diag(mi) ∈ Rn×n, (5)

where mi ,
[
mi1 mi2 . . . min

]T
∈ Rn for i = 1, 2, . . . , N and mir are nonnegative scalar weights with

r = 1, 2, . . . , n. A substate of zi(t) is called “valid” when its weight is positive. Conversely, a substate of

zi(t) is called “invalid” when its weight is 0. Under certain circumstances (e.g., see Ref. 8 and references

therein), a sensor can be subject to some observations, yet the information may not be reliable (and so

its substates are set to be invalid). We also assume that zi(t) and żi(t) are bounded. Considering the

multivehicle application focus of this paper as the process to be monitored, this assumption generally holds,

because the vehicles’ properties such as positions and velocities are bounded, on the observation field. After

zi(t) and the value of information matrix Mi are constructed, they are then passed to the active-passive

consensus filter for information fusion and to the information validity monitor layer for evaluation of the

quality of fused information as illustrated in Figure 1.

For the purpose of establishing an intermediate result, Section III next presents the active-passive con-

sensus filter for the case where the active-passive roles of nodes are fixed for each node and assume the

local estimation zi(t) is constant. We then introduce the main result of this paper by extending the result

of Section III to the actual practical case, where both the active-passive role of each node and zi(t) are

time-varying in Section IV.
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III. Active-Passive Consensus Filters with Fixed Information Node Roles

A. Proposed Architecture

The active-passive consensus filter aims to drive substates of each node to the average of all valid active

corresponding substates (i.e, an agent needs to be active and its corresponding substates need to have

positive weights) of the vectors of the local observers zi(t), i = 1, 2, . . . , N . Specifically, in this section, we

assume that the active-passive role of each node is fixed and the vectors of the local observers zi(t) ≡ zi,

i = 1, 2, . . . , N , are constants for the sake of establishing an intermediate result for the following sections of

this paper. Mathematically speaking, we consider the proposed active-passive consensus filter given by

ẋi(t) = −α
∑
i∼j

(xi(t)− xj(t)) + α
∑
i∼j

(ξi(t)− ξj(t))− αkiMi(xi(t)− zi), xi(0) = xi0, (6)

ξ̇i(t) = −γ
∑
i∼j

(xi(t)− xj(t)), ξi(0) = ξi0, (7)

where xi(t) ∈ Rn, ξi(t) ∈ Rn, zi ∈ Rn denote the state, the integral action, and the local observer vector of

node i, i = 1, . . . , N , respectively. Here, Mi is the value of information matrix defined in (5) and α, γ ∈ R+

are constant gains. Under the assumption that the information node roles are fixed, ki = 1 for active nodes

and ki = 0 for passive nodes.

Remark 2. We introduce a similar active-passive consensus filter in Ref. 8; however, our previous result

documented in that paper only considered scalar integrator dynamics. We next present the stability properties

of (6) and (7) having xi(t) ∈ Rn and ξi(t) ∈ Rn. In addition, we note that the stability results documented

in Ref. 8 can also be applied to each scalar element of (6) and (7) in parallel. Yet, the presented stability

properties of the next subsection is compact in the sense that we do not focus on scalar elements of (6) and

(7) but to their compact form; hence, from our standpoint, it is worth to include the following content to this

paper for completeness.

B. Stability Analysis

Let x(t) ,
[
xT

1 (t) xT
2 (t) . . . xT

N (t)

]T
, ξ(t) ,

[
ξT
1 (t) ξT

2 (t) . . . ξT
N (t)

]T
, and ζ ,[

zT
1 zT

2 . . . zT
N

]T
. The proposed algorithm (6) and (7) can be rewritten in the compact form given

by

ẋ(t) = −α(L(G)⊗ In)x(t) + γ(L(G)⊗ In)ξ(t)− αMx(t) + αMζ

= −αFx(t) + γ(L(G)⊗ In)ξ(t) + αMζ, x(0) = x0, (8)

ξ̇(t) = −γ(L(G)⊗ In)x(t), ξ(0) = ξ0, (9)

where

M , block−diag(k1M1, k2M2, . . . , kNMN ) ∈ RNn×Nn, (10)
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and F ,
(
L(G) ⊗ In +M

)
∈ RNn×Nn. Since Mi for all i = 1, 2, . . . , N are diagonal matrices, M is then a

diagonal matrix. Furthermore, since (L(G) ⊗ In) and M are nonnegative definite, F is either nonnegative

definite or positive definite.

Note that a substate of zi is said to be valid if its weight in Mi is positive. In addition, zi is active when

ki = 1. Since we are interested in driving substates of xi(t) of each node to the average of all valid active

corresponding substates of local observer vectors zi , i = 1, 2, . . . , N in the network, define

S , (1T
N ⊗ In)M(1N ⊗ In) ∈ Rn×n

= k1M1 + k2M2 + . . .+ kNMN , (11)

as the diagonal matrix with the total weight of valid active substates of zi on the diagonal. We now let

ε , S+(1TN ⊗ In)Mζ ∈ Rn (12)

be the average of all valid active substates of local observer vectors zi, i = 1, 2, . . . , N in the network. Note

that since zi, i = 1, 2, . . . , N are constant, ζ and ε are also constant in this case.

Remark 3. In this section, we do not assume collective observability (see, for example, Refs. 7, 11).

Collective observability can imply that at any moment there exists at least one node that is active and has

valid information for each substate of zi; hence, the matrix S has full rank and is invertible. Recall that S

is a diagonal matrix with each element on the diagonal is the total weight of the corresponding valid active

substate of local observer vectors zi. In addition, a substate of xi(t) and zi(t) are said to be completely passive

if there is no node in the network can observe or has a valid observation on that corresponding substate. In

other words, if the substate r is completely passive (that is, kimir = 0 for all nodes i = 1, . . . , N where mir is

the r-th element on the diagonal of the matrix Mi), then S has a row of zeros (the r-th row). A nice property

of the pseudo-inverse of a diagonal matrix is that each positive diagonal element is inversed, except zero

diagonal elements are still zeros. For example, if S = diag
( [
a b 0

] )
, then S+ = diag

( [
a−1 b−1 0

] )
for a, b ∈ R+. In the case if a substate of zi is completely passive, the corresponding substate of xi(t)

converges to average consensus and this happens only when an element on the diagonal of S is 0. This is

shown and discussed later in Remark 5 of Section III.C.

We now define the error δ(t) ,
(
x(t)− (1N ⊗ ε)

)
∈ RNn and taking its time derivative to obtain

δ̇(t) = −αF
(
δ(t) + (1N ⊗ ε)

)
+ γ(L(G)⊗ In)ξ(t) + αMζ

= −αFδ(t)− αM(1N ⊗ ε) + γ(L(G)⊗ In)ξ(t) + αMζ

= −αFδ(t) + γ(L(G)⊗ In)ξ(t)− αMω, δ(0) = δ0, (13)

where the third equality comes from the facts that F =
(
L(G) ⊗ In +M

)
and L(G)1N = 0N , and ω ,(

(1N ⊗ ε)− ζ
)
∈ RNn. Next, define e(t) ,

(
ξ(t)− α

γ (L+(G)⊗ In)Mω
)
∈ RNn and take its time derivative as

ė(t) = −γ(L(G)⊗ In)
(
δ(t) + (1N ⊗ ε)

)
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= −γ(L(G)⊗ In)δ(t), e(0) = e0. (14)

From (13), Lemma A.1, and the definition of e(t), one can write

δ̇(t) = −αFδ(t) + γ(L(G)⊗ In)
(
e(t) +

α

γ
(L+(G)⊗ In)Mω

)
− αMω

= −αFδ(t) + γ(L(G)⊗ In)e(t) + α
((
L(G)L+(G)⊗ In

)
− INn

)
Mω

= −αFδ(t) + γ(L(G)⊗ In)e(t) + α
((

(IN − 1
N 1N1T

N )⊗ In
)
− INn

)
Mω

= −αFδ(t) + γ(L(G)⊗ In)e(t) + α
((

INn − ( 1
N 1N1T

N )⊗ In
)
− INn

)
Mω

= −αFδ(t) + γ(L(G)⊗ In)e(t)− α

N
(1N ⊗ In)(1T

N ⊗ In)Mω, δ(0) = δ0, (15)

To further write (15) in a simpler form, we now introduce the following lemma.

Lemma 1. Let ε be defined by (12), M be defined by (10), and ω ,
(
(1N ⊗ ε)− ζ

)
. Then,

(1T
N ⊗ In)Mω = 0. (16)

Proof. See the Appendix B.

Remark 4. Although, owing to the assumptions of this subsection, ki, ζ, and ε are constant, the result of

Lemma 1 is still valid for the case when ki(t), ζ(t), and ε(t) are time-varying.

Under the result of Lemma 1, (15) can now be simplified as

δ̇(t) = −αFδ(t) + γ(L(G)⊗ In)e(t), δ(0) = δ0. (17)

The closed-loop error dynamics of the system given by (6) and (7) are

δ̇(t) = −αFδ(t) + γ(L(G)⊗ In)e(t), δ(0) = δ0. (18)

ė(t) = −γ(L(G)⊗ In)δ(t), e(0) = e0. (19)

We are now ready to state the following result.

Theorem 1. Consider a sensor network with N nodes given by (6) and (7), where nodes exchange informa-

tion using local measurements under a connected, undirected graph G. Then, the closed loop error dynamics

(18) and (19) are Lyapunov stable and δ(t) converges to the null space of F .

Proof. Consider the Lyapunov function candidate given by

V (δ, e) =
1

2
δTδ +

1

2
eTe. (20)

Note that V (0, 0) = 0 and V (δ, e) > 0 for all (δ, e) 6= 0. The time derivative of (20) along the trajectories of
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(18) and (19) is given by

V̇ (δ(t), e(t)) = −αδT(t)Fδ(t) + γδT(t)(L(G)⊗ In)e(t)− γeT(t)(L(G)⊗ In)δ(t)

= −αδT(t)Fδ(t) ≤ 0 (21)

Therefore, the closed-loop error dynamics (18) and (19) are Lyapunov stable. Because V̈ (δ(t), e(t)) is also

bounded for all t ≥ 0, it follows from Barbalat’s lemma (see Ref. 12) that limt→∞ V̇ (δ(t), e(t)) = limt→∞

(
−

αδT(t)Fδ(t)
)

= 0. Therefore, as t→∞,

δT(t)Fδ(t) = δT(t)F 1/2F 1/2δ(t) =
(
F 1/2δ(t)

)T(
F 1/2δ(t)

)
= ‖
(
F 1/2δ(t)

)
‖2 → 0. (22)

Note that (22) indicates that δ(t) converges to the null space of F 1/2. Since F is a symmetric matrix,

it is always diagonalizable by an orthogonal matrix U ∈ RNn×Nn such that F = UΛUT, where Λ ∈
RNn×Nn is the diagonal matrix with eigenvalues of F on the diagonal. As a result, F 1/2 = UΛ1/2UT since

F 1/2F 1/2 = UΛ1/2UTUΛ1/2UT = UΛUT = F . Therefore, (F 1/2)T = (UΛ1/2UT)T = (UT)TΛ1/2UT =

UΛ1/2UT = F 1/2, thus F 1/2 is also a symmetric matrix. Utilize the result of Lemma A.4 for F 1/2, we have

N (F 1/2) = N (F ). Hence, δ(t) converges to the null space of F . �

We now investigate the null space of F =
(
L(G)⊗ In +M

)
in the next subsection owing to the fact that

the above theorem shows that δ(t) converges to the null space of F .

C. Convergence Analysis

We first decompose the structure of F as

F = L(G)⊗ In +M

=


L11In L12In . . . L1N In

L21In L22In . . . L2N In
...

...
. . .

...

LN1In LN2In . . . LNN In

+


k1M1 0 · · · 0

0 k2M2 · · · 0
...

...
. . .

...

0 0 · · · kNMN



=


L11In + k1M1 L12In . . . L1N In

L21In L22In + k2M2 . . . L2N In
...

...
. . .

...

LN1In LN2In . . . LNN In + kNMN

 , (23)

where Lij denotes the corresponding element at i-th row and j-th column of the Laplacian matrix L(G).

Recall that Mi = diag(mi) is the value of information matrix of node i for i = 1, 2, . . . , N , where mi ,[
mi1 mi2 . . . min

]T
∈ Rn and mir are nonnegative scalar weights with r = 1, 2, . . . , n. Therefore, M
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can be rewritten as

M = diag

([
k1m11 . . . k1m1n . . . knmN1 . . . knmNn

]T)
. (24)

Next, there is a permutation matrix J ∈ RNn×Nn that allows us to reorder δ(t) as

Jδ(t) = J



δ11(t)
...

δ1n(t)
...

δN1(t)
...

δNn(t)


=



δ11(t)
...

δN1(t)
...

δ1n(t)
...

δNn(t)



Substate 1

...Substate n

(25)

where δir(t) indicates the error of substate r, r = 1, 2, . . . , n of node i, i = 1, 2, . . . , N . Therefore,

JFJT = J(L(G)⊗ In)JT + JMJT

=


L(G)

. . .

L(G)

+




k1m11

. . .

kNmN1


. . . 

k1m1n

. . .

kNmNn





=




L11 + k1m11 · · · L1N

...
. . .

...

LN1 · · · LNN + kNmN1


. . . 

L11 + k1m1n · · · L1N

...
. . .

...

LN1 · · · LNN + kNmNn





=


F1

. . .

Fn

 , (26)

where Fr ,


L11 + k1m1r · · · L1N

...
. . .

...

LN1 · · · LNN + kNmNr

 for r = 1, 2, . . . , n. Note that, from, for example, Lemma

2 in Ref. 13 or Lemma 3.3 in Ref. 14, if there exists at least one node i for i = 1, 2, . . . , N such that kimir

is positive, Fr is positive definite and N (Fr) = 0. On the other hand, if a substate r is completely passive,
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then kimir = 0 for all i as discussed in Remark 3. In this case, Fr = L(G), and hence, N (Fr) = N (L(G)) =

span(1N ).

Let f(r) for r = 1, 2, . . . , n be a function such that

f(r) ,


0 if there exists at least one node i in the network

such that kimir is positive,

1 otherwise.

(27)

We now can write

N (Fr) = span
(
f(r)1N

)
. (28)

Therefore,

N (JFJT) = span



f(1)1N

...

f(n)1N


 = span(ν) = aν, (29)

where a ∈ R. Note that if each specific substate r has at least one positive scalar weight mir for for some

i ∈ VG , then ν is a zero vector. In all other cases, ν ∈ RNn is a non-zero vector.

Since J is invertible, rank(JFJT) = rank(JF ) = rank(F ). In addition, rank(JFJT) + def(JFJT) =

rank(JF ) + def(JF ) = rank(F ) + def(F ) = Nn. Therefore, def(JFJT) = def(JF ) = def(F ). As a result,

(JF )JT(aν) = 0 also indicates that JT(aν) is the null space of JF . It should be also noted that the

permutation matrix J satisfies JJT = JTJ = INn; hence, JTJFJT(aν) = (JTJ)F (JT(aν)) = F (JT(aν)) =

0. Consequently, JT(aν) is the null space of F and we can rewrite JT(aν) as

η , JT(aν) =



f(1)
...

f(n)
...

f(1)
...

f(n)



Node 1

...Node N

= a

1N ⊗


f(1)

...

f(n)


 , a(1N ⊗ f̄). (30)

Note that since F is a constant matrix, f̄ ∈ Rn is also a constant vector in this case. In addition, Theorem

1 indicates that δ(t) converges to a(1N ⊗ f̄). Recall that by definition δ(t) , x(t)− (1N ⊗ ε), and thus

lim
t→∞

(
x(t)− (1N ⊗ ε)− a(1N ⊗ f̄)

)
= 0, (31)
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or equivalently,

lim
t→∞

(
x(t)− (1N ⊗ (ε+ af̄)

)
= 0. (32)

In general, (32) shows that under the proposed active-passive consensus filter given by (6) and (7) in sub-

section A, all nodes reach the consensus in substate-wise.

Remark 5. If a substate r, r = 1, 2, . . . , n is completely passive, the corresponding substate of ε takes a zero

value owing to a corresponding zero row in the matrix S as discussed in Remark 3, and f(r) = 1 by (27).

As a result, (30) and (32) indicate that a completely passive substate r is under the average consensus and

finally converge to a consensus value. On the other hand, if there is at least one node i in the network that

is active and has valid information on a substate r, r = 1, 2, . . . , n (i.e., there is at least one positive kimir

for i = 1, 2, . . . , N), then f(r) = 0 and (30) and (32) suggest the substate converge to the average of all valid

active corresponding substates in the network.

IV.Active-Passive Consensus Filters with Time-varying Information Node Roles

A. Proposed Architecture

In this section, we extend the intermediate result in Section III to the actual practical case, where both the

active-passive role of each node and the local observer vectors zi(t), i = 1, 2, . . . , N are time-varying. However,

owing to the properties of the overall time-varying system, we now consider that at any time moment t, for

each substate of the process, there is at least one node that is active and has a valid information on that

substate (that is, there is no completely passive substate at any time moment) as in Ref. 8. For this purpose,

we consider the proposed active-passive consensus filter given by

ẋi(t) = −α
∑
i∼j

(xi(t)− xj(t)) + α
∑
i∼j

(ξi(t)− ξj(t))− αki(t)Mi(xi(t)− zi(t)), xi(0) = xi0, (33)

ξ̇i(t) = −γ
(∑
i∼j

(xi(t)− xj(t)) + σξi(t)
)
, ξi(0) = ξi0, (34)

where xi(t) ∈ Rn, ξi(t) ∈ Rn, zi(t) ∈ Rn denote the state, the integral action and the local estimate of

node i, i = 1, . . . , N respectively. Mi is the value of information matrix defined in (5). Moreover, α, γ ∈ R+

are constant consensus gains. Note that ki(t) in this section is time-varying and ki(t) ∈ [0, 1]. We further

assume that each node can smoothly change back and forth between active and passive role (i.e., ki(t) is a

smooth function on the interval [0, 1]). We also note again the discussion in Remark 2 here.

B. Stability Analysis

Let x(t) ,
[
xT

1 (t) xT
2 (t) . . . xT

N (t)

]T
, ξ(t) ,

[
ξT
1 (t) ξT

2 (t) . . . ξT
N (t)

]T
, and ζ(t) ,[

zT
1 (t) zT

2 (t) . . . zT
N (t)

]T
. Similar to (8) and (9), the proposed algorithm (33) and (34) can be rewritten

in the compact form as

ẋ(t) = −αF (t)x(t) + γ(L(G)⊗ In)ξ(t) + αM(t)ζ(t), x(0) = x0, (35)
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ξ̇(t) = −γ(L(G)⊗ In)x(t)− γσξ(t), ξ(0) = ξ0, (36)

where M(t) , block−diag
(
k1(t)M1, k2(t)M2, . . . , kN (t)MN

)
∈ RNn×Nn, and F (t) ,

(
L(G)⊗ In +M(t)

)
∈

RNn×Nn. Since Mi for all i = 1, 2, . . . , N are diagonal matrices, M(t) is a diagonal matrix for any t ≥ 0.

Similar to (11), we define

S(t) , (1T
N ⊗ In)M(t)(1N ⊗ In) ∈ Rn×n

= k1(t)M1 + k2(t)M2 + . . .+ kN (t)MN , (37)

as a diagonal matrix that contains the total weight of all valid active substates of local observer vectors zi(t)

on its diagonal. Note that since we assume at any time moment t, for each substate of the process, there is

at least one node that is active and has a valid information on that substate, S(t) is full rank as discussed

in Remark 3; hence, it is invertible. We now let

ε(t) , S−1(t)(1TN ⊗ In)M(t)ζ(t) ∈ Rn (38)

be the dynamic average of all valid active substates of local observer vectors zi(t), i = 1, 2, . . . , N in the

network.

Next, we define the error as

δ(t) , x(t)− (1N ⊗ ε(t)) ∈ RNn, (39)

e(t) , ξ(t)− α

γ
(L+(G)⊗ In)M(t)ω(t) ∈ RNn, (40)

where ω(t) ,
(
(1N ⊗ ε(t))− ζ(t)

)
∈ RNn. Similar to (15) and (14), by taking the time derivative of (39) and

(40), we obtain

δ̇(t) = −αF (t)δ(t) + γ(L(G)⊗ In)e(t)− α

N
(1N ⊗ In)(1T

N ⊗ In)M(t)ω(t)− (1N ⊗ ε̇(t)), δ(0) = δ0, (41)

ė(t) = −γ(L(G)⊗ In)δ(t)− γσe(t)− σα(L(G)+ ⊗ In)M(t)ω(t)

−α
γ

(L(G)+ ⊗ In)
(
Ṁ(t)ω(t) +M(t)ω̇(t)

)
, e(0) = e0. (42)

By Lemma 1 and Remark 4, we can further reduce (41) to

δ̇(t) = −αF (t)δ(t) + γ(L(G)⊗ In)e(t)− (1N ⊗ ε̇(t)), δ(0) = δ0. (43)

Next, define

q1(t) , −(1N ⊗ ε̇(t)), (44)

q2(t) , −σα(L(G)+ ⊗ In)M(t)ω(t)− α

γ
(L(G)+ ⊗ In)

(
Ṁ(t)ω(t) +M(t)ω̇(t)

)
. (45)

Since ki(t) is a smooth function on the interval [0, 1],M(t), S(t), S+(t) and Ṁ(t) are bounded. In addition,

since zi(t) and żi(t) are bounded by assumption, ζ(t) and ζ̇(t) are bounded. Consequently, ε(t), ω(t), ε̇(t),
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and ω̇(t) are bounded. Therefore, q1(t) and q2(t) are bounded such as ‖q1(t)‖2 ≤ q∗1 and ‖q2(t)‖2 ≤ q∗2 . (43)

and (42) are now can be rewritten as

δ̇(t) = −αF (t)δ(t) + γ(L(G)⊗ In)e(t) + q1(t), δ(0) = δ0. (46)

ė(t) = −γ(L(G)⊗ In)δ(t)− γσe(t) + q2(t), e(0) = e0. (47)

Theorem 2. Consider a sensor network with N nodes given by (33) and (34), where nodes exchange

information using local measurements under a connected, undirected graph G. Then, the closed-loop error

dynamics (46) and (47) are uniformly ultimately bounded.

Proof. Consider the Lyapunov function candidate given by (20). By taking time derivative of (20) along

the trajectories of (46) and (47), we obtain

V̇ (δ(t), e(t)) = −αδT(t)F (t)δ(t) + γδT(t)(L(G)⊗ In)e(t) + δ(t)Tq1(t)− γeT(t)(L(G)⊗ In)δ(t)

−γσeT(t)e(t) + eT(t)q2(t)

= −αδT(t)F (t)δ(t)− γσeT(t)e(t) + δT(t)q1(t) + eT(t)q2(t)

≤ −αδT(t)F (t)δ(t) + δT(t)q1(t)− γσ‖e(t)‖22 + ‖e(t)‖2q∗2

≤ −αδT(t)F (t)δ(t) + δT(t)q1(t)− γσ‖e(t)‖2
(
‖e(t)‖2 − φe), (48)

where φe ,
q∗2
γσ . Let

H , −αδT(t)F (t)δ(t) + δT(t)q1(t), (49)

and

ψ(t) , Jδ(t) = J



δ11(t)
...

δ1n(t)
...

δN1(t)
...

δNn(t)


=



δ11(t)
...

δN1(t)
...

δ1n(t)
...

δNn(t)



ψ1(t)

...ψn(t)

=


ψ1(t)

...

ψn(t)

 , (50)

where J is the same permutation matrix discussed in subsection C and δij(t) indicates the error of substate

j, j = 1, 2, . . . , n of node i, i = 1, 2, . . . , N . Note that

ψT(t)(JFJT)ψ(t) = δT(t)JT(JFJT)Jδ(t) = δT(t)Fδ(t). (51)

Utilize (51) and (44), (49) can be rewritten as

H = −αψT(t)(JFJT)ψ(t)− ψ(t)J(1N ⊗ ε̇(t)). (52)
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Note also that

J(1N ⊗ ε̇(t)) = J


ε̇(t)

...

ε̇(t)

 =


1N ε̇1(t)

...

1N ε̇n(t)

 , (53)

where ε̇j(t) for j = 1, 2, . . . , n is the j-th substate of ε(t). By assuming that at any time moment t, for each

substate of the process, there is at least one node that is active and has a valid information on that substate,

the structure of JF (t)JT in (26) shows us that for all r = 1, 2, . . . , n, Fr(t) can be rewritten as

Fr(t) =


L11 + k1(t)m1r · · · L1N

...
. . .

...

LN1 · · · LNN + kN (t)mNr

 = L(G) +Kr(t) (54)

where Kr(t) = diag(
[
k1(t)m1r . . . kN (t)mNr

]T
) with at least one of the element on the diagonal

βi , ki(t)mir ∈ R+ for some i ∈ VG . Thus, we can write Kr(t) = Kr0 + Kr1(t) where Kr0 ,

diag(
[
0 . . . 0 βi 0 . . . 0

]T
), and Kr1 , Kr(t) − Kr0 is also a diagonal matrix with nonnegative

elements on the diagonal. As a result, we have

Fr(t) = L(G) +Kr0 +Kr1(t) = Fr0 +Kr1(t), (55)

where Fr0 , L(G) +Kr0 is a positive definite matrix by, for example, Lemma 2 in Ref. 13 or Lemma 3.3 in

Ref. 14. We now can write

JF (t)JT = F0 +M0(t), (56)

where F0 , block−diag(F10, F20, . . . , Fn0) is a positive definite matrix and M0(t) ,

block−diag(K11(t),K21(t), . . . ,Kn1(t)) is a diagonal matrix with nonnegative elements on the diago-

nal. From (56), (52) now becomes

H = −αψT(t)
(
F0 +M0(t)

)
ψ(t)− ψ(t)J(1N ⊗ ε̇(t))

≤ −αψT(t)F0ψ(t)− ψ(t)J(1N ⊗ ε̇(t))

≤ −αλmin(F0)‖ψ(t)‖22 + ‖ψ(t)‖2q∗1

≤ −αλmin(F0)‖ψ(t)‖2(‖ψ(t)‖2 − φδ), (57)

where φδ =
q∗1

αλmin(F0) with ‖J(1N⊗ ε̇(t))‖2 = ‖(1N⊗ ε̇(t))‖2 ≤ q∗1 . We note here again that ψ(t) , Jδ(t); that

is, ψ(t) is a permutation of δ(t), and since a vector norm is preserved under permutation, ‖ψ(t)‖2 = ‖δ(t)‖2.

Therefore, H ≤ 0 outside the compact set Ωδ , {
(
δ(t), e(t)

)
: ‖ψ(t)‖2 ≤ φδ} = {

(
δ(t), e(t)

)
: ‖δ(t)‖2 ≤ φδ}.
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By combining the result of (48) and (57), we have V̇ (δ(t), e(t)) ≤ 0 outside the compact set given by

Ω , {
(
δ(t), e(t)

)
: ‖δ(t)‖2 ≤ φδ} ∩ {

(
δ(t), e(t)

)
: ‖e(t)‖2 ≤ φe}. (58)

Consequently, the closed-loop error dynamics given by (46) and (47) are uniformly bounded. �

The following corollary to the above theorem is immediate.

Corollary 1. Consider a sensor network with N nodes given by (33) and (34), where nodes exchange

information using local measurements under a connected, undirected graph G. Then, the ultimately bound of

δ(t) for t ≥ T is given by

‖δ(t)‖22 ≤
(q∗1)2

α2λmin(F0)2
+

(q∗2)2

γ2σ2
, (59)

where q∗1 and q∗2 are the upper bounds of ‖q1(t)‖22 and ‖q2(t)‖22 defined in (44) and (45).

Proof. From the proof of Theorem 2, we have V̇ (δ(t), e(t)) ≤ 0 outside the compact set Ω given by (58).

Therefore, the evolution of V (δ(t), e(t)) is upper bounded by

V (δ(t), e(t)) ≤ max
(δ(t),e(t))∈Ω

V (δ(t), e(t)) =
1

2
(φ2
δ + φ2

e). (60)

Note that 1
2δ

T(t)δ(t) ≤ V (δ(t), e(t)), thus (59) is immediate �

Remark 6. It should be noted that by definition of q2(t) in (45), the upper bound q∗2 can be rewritten as

q∗2 = αq∗3 . As a result, Corollary 1 indicates if the gains α, γ, and σ are chosen properly such that 1
α2 and

α2

γ2σ2 are small, then the ultimate bound (59) of δ(t) is small when t ≥ T ; and hence, the overall performance

of the sensor network can be improved.

V. Information Validity Monitor Layer

In this section, we present a dynamic average consensus that is parallel to the active-passive consensus

filter in order to monitor the validity of the information (see Figure 1). For this purpose, consider the

dynamics given by

q̇i(t) = −β
∑
i∼j

(
qi(t)− qj(t)

)
+ β

∑
i∼j

(
ri(t)− rj(t)

)
− β

(
qi(t)− hi(t)

)
, qi(0) = qi0, (61)

ṙi(t) = −µ
∑
i∼j

(
qi(t)− qj(t)

)
, ri(0) = ri0, (62)

where qi(t) ∈ Rn denotes the information validity vector for node i, i = 1, 2, . . . , N , hi(t) , ki(t)mi ∈ Rn

with mi is the diagonal of the value of information matrix Mi, and β, µ ∈ R+ denote the gains.

Note that the structure of (61) and (62) is a special case of (6) and (7), where it becomes a dynamic

average consensus, for which a proof can be found in, for example Refs. 1 and 15 and references therein.

Therefore, qi(t) is tracking the neighborhood of the dynamic average h̄(t) , 11T

N h(t) ∈ Rn with h(t) =
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[
hT

1 (t) hT
2 (t) . . . hT

N (t)

]T
. Since h̄(t) is the dynamic average of the ki(t)mi for all i = 1, 2, . . . , N , qi(t)

provides us the information on the average of active weights of the whole network at each time moment for

each substate of zi(t), i = 1, 2, . . . , N . Therefore, qi(t) can be considered as a confidence factor to check the

reliability of the information. For example, the value of a substate of qi(t) increases as the number of valid

active corresponding substates of zi(t) for all i = 1, 2, . . . , N in the whole network increases; that is, the

higher the value of qi(t) is, the more reliable the information is. This point would become more apparent as

illustrated in examples of Section VI.

VI. Discussion and Examples

In this section, we present several numerical examples to illustrate the results given in previous section.

For this purpose, consider a process composed of two subprocesses with the dynamics given by (1), where

A = block−diag
(
A1, A2

)
=


0.0150 0 0 0

0 −0.0250 0 0

0 0 −0.0005 0.1000

0 0 −0.2500 0

 . (63)

with A1 ,

0.0150 0

0 −0.0250

 and A2 ,

−0.0005 0.1000

−0.2500 0

. We consider a sensor network with 4 nodes

exchange information among each other using their local measurements according to a connected, undirected

ring graph. Each node’s sensing capability is represented by (3) with the output matrices

IC1 =
[
1 0 0 0

]
, (64)

IIIC2 =
[
0 1 0 0

]
, (65)

IC3 =
[
0 0 1 0

]
, (66)

IC4 =
[
0 0 0 1

]
, (67)

and hence, for the local observers 1C̄1 = [1 0], 1C̄2 = [0 1] corresponding to A1 and 2C̄3 = [1 0], 2C̄4 = [0 1]

corresponding to A2. Note that sensors 1, 3, and 4 are Category I sensors since the pair (A1,
1C̄1) is

detectable, and the pairs (A2,
2C̄3) and (A2,

2C̄4) are observable. On the other hand, the pair (A1,
1C̄2) is

unobservable, so sensor 2 is a Category III sensor. As a result, the observer structure (4) is only applied to

sensors 1, 3, and 4. For example,

ṡ1(t) = A1s1(t) + 1L1(y1 − 1C̄1s1(t)), (68)
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where s1(t) ∈ R2 and 1L1 =

2.0302

0

. Similarly, for sensors 3 and 4, s3(t), s4(t) ∈ R2 and we choose

2L3 =

5.3737

3.9039

 , (69)

2L4 =

−1.8052

2.4094

 . (70)

As discussed in Section II.B, after using the local observers to estimate the states of the subprocesses, we

are now able to construct zi(t) ∈ R4 such that

z1(t) =
[
sT

1 (t) 0 0

]T
, (71)

z2(t) =
[
0 y2(t) 0 0

]T
, (72)

z3(t) =
[
0 0 sT

3 (t)

]T
, (73)

z4(t) =
[
0 0 sT

4 (t)

]T
. (74)

Next, we define the value of information matrix for each node. Since the pair (A1,
1C̄1) is detectable,

sensor 1 can observe the first substate of the process, yet the estimation of second substate of the process

is not so well. Thus, we can choose M1 = diag
([

2 0.5 0 0

])
. In the same manner, we choose M2 =

diag
([

0 2 0 0

])
, M3 = diag

([
0 0 2 1

])
and M4 = diag

([
0 0 1 2

])
.

In addition, all nodes are subject to random initial conditions and we set α = 15, γ = 10, σ = 0.1, β = 10

and µ = 5. Furthermore, for the transition of ki(t), we use the function ki(t) = e−θt when node i is switching

from 1 to 0, and ki(t) = 1 − e−θt when node i is switching from 0 to 1, where θ = 5. The simulations are

run for 100 second. All below examples share the same setup but are different in node roles over time.

Example 1. In this example, the role of each node are fixed over time. Specifically, nodes 1, 2, and 3 are

active (i.e, k1(t) = k2(t) = k3(t) = 1) while node 4 is passive (i.e, k4(t) = 0). Note that this information node

role setup satisfies the assumption in Section IV that for each process’s substate, there is at least one node

that is active and has a valid information on that substate. Figure 2 shows the performance of the sensor

networks under the proposed active-passive consensus filter given by (33) and (34), where nodes quickly

converge to consensus and are able to closely estimate the process states. In addition, Figure 3 shows the

result of the information validity monitor layer given by (61) and (62). Since the information node role setup

in this example is fixed, the information validity vectors converge to constants. As can be seen, for example,

in the bottom plot of Figure 3, the information validity vector of the process’ fourth substate converges to a

low value due to the fact that node 4, which can directly senses this substate, is passive and the information

in this substate is obtained only from the local observer of node 3.

Example 2. In this example, the role of each node varies over time. For the first 25 seconds, nodes 1

and 4 are active (i.e, k1(t) = k4(t) = 1 and k2(t) = k3(t) = 0); for t ∈ (25, 50], nodes 1 and 3 are active;

for t ∈ (50, 75], all 4 nodes are active; for t ∈ (75, 100], nodes 1, 2 and 3 are active. This information node
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Figure 2. State estimates of the sensor network with four nodes in a connected, undirected ring graph in
Example 1 under the proposed active-passive consensus filter architecture (33) and (34) (the dash lines denote
the states of the actual process and the solid lines denote the state estimates of nodes).

Figure 3. The evolution of information validity vector of the sensor network with four nodes in a connected,
undirected ring graph in Example 1 under the monitor layer given by (61) and (62).

role configuration satisfies the assumption in Section IV that for each process’s substate, there is at least

one node that is active and has a valid information on that substate. Figure 4 shows the performance of

the sensor networks under the proposed active-passive consensus filter given by (33) and (34), where nodes

quickly converge to consensus and are able to closely estimate the process states. In addition, Figure 5 shows

the result of the information validity monitor layer given by (61) and (62). Since the information node roles

change with respect to time in this example, the information validity vectors converge to different values over

time. For example, for the first 50 seconds, the value of the information validity vectors qi2(t) on the second
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Figure 4. State estimates of the sensor network with four nodes in a connected, undirected ring graph in
Example 2 under the proposed active-passive consensus filter architecture (33) and (34) (the dash lines denote
the states of the actual process and the solid lines denote the state estimates of nodes).

Figure 5. The evolution of information validity vector of the sensor network with four nodes in a connected,
undirected ring graph in Example 2 under the monitor layer given by (61) and (62).

substate of the process is small since the information on this substate is obtained from the local observer of

node 1, which has the weight of 0.5 only. For the last 50 seconds, the value of qi2(t) has increased since node

2 becomes active and adds more validity on the information.

Example 3. In this example, the role of each node varies over time such that for the first 25 second,

nodes 2 and 4 are active (i.e, k2(t) = k4(t) = 1 and k1(t) = k3(t) = 0); for t ∈ (25, 50], nodes 3 and 4 are

active; for t ∈ (50, 75], all 4 nodes are active; for t ∈ (75, 100], nodes 1 and 2 are active. This information

node role configuration indeed violates the assumption in Section IV that for each process’s substate, there is
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at least one node that is active and has a valid information on that substate. In fact, this configuration allows

some substates becomes completely passive at some time instants, and it can be another important practical

case. For example, if the process of interest represents multiple targets with each subprocess corresponding

to a target, then at any time instant, a target can or can not be observed by the sensor network.

Figure 6 shows the performance of the sensor networks under the proposed active-passive consensus filter

given by (33) and (34), where nodes quickly converge to consensus and are able to closely estimate the

actual value if that particular process substate can be observed by at least one node (i.e., at least one node

is active and has valid information on that substate). By utilizing the information validity monitor layer

given by (61) and (62), one can monitor if the information of a substate is valid or not (that is, if qij(t) = 0,

then the substate j is completely passive, and thus the information is invalid and not reliable) as shown in

Figure 7. It can be seen that, for example, during the first 50 seconds the first substate of the process is

not observable (i.e., completely passive), and hence the information from the sensors on this substate is not

valid. Another example is that during the last 25 seconds, the third and fourth substates of the process

are completely passive (see Figure 7) and the corresponding substates obtained from the sensor network are

constants during this time period as seen in Figure 6. As discussed in Remark 5 of Section III, completely

passive substates still result in nodes reaching consensus, yet the information is invalid. Note that at time

t = 75 seconds, the nodes’ estimates already reached the consensus, thus when these substates becomes

completely passive, the sensors retains the last values they sense from the process until at least one of the

sensor becomes active and has valid information on these substates.

Intuitively, from the analysis in Section III, we expect that when extending the architecture (6) and (7)

to the time-varying case, that is, the proposed active-passive consensus filter in Section IV given by (33) and

(34), the sensor networks can converge to the null space of F (t). However, without the assumption in Section

IV (that is, for each process’s substate, there is at least one node that is active and has a valid information

on that substate), at each time instant F (t) can be either positive definite or nonnegative definite, and

hence, the null space of F (t) is time-varying as well. Utilizing Lyapunov analysis in this case is a good and

challenging future research direction to the authors.

VII. Conclusion

This paper contributed to the previous studies in heterogeneous sensor networks through proposing a

dynamic information fusion framework for sensor networks with the integration of local observers, value

of information, active-passive consensus filters, and a layer to monitor the validity of information. The

proposed framework considered a process of interest with multiple subprocesses and the sensor network

that allows nodes with heterogeneous modalities, heterogeneous information node roles, and heterogeneous

quality of information. In addition, the extra layer allows operators to evaluate the reliability of the fused

information based on the local feedbacks received from the sensor network. In addition to the presented

theoretical algorithms, illustrative examples had shown the efficacy of the proposed structure and prompted

a discussion on the practical aspects when relaxing some certain assumptions.
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Figure 6. State estimates of the sensor network with four nodes in a connected, undirected ring graph in
Example 3 under the proposed active-passive consensus filter architecture (33) and (34) (the dash lines denote
the states of the actual process and the solid lines denote the state estimates of nodes).

Figure 7. The evolution of information validity vector of the sensor network with four nodes in a connected,
undirected ring graph in Example 3 under the monitor layer given by (61) and (62).

Appendix

A. Mathematical Preliminaries

The notation used in this paper is fairly standard. Specifically, Z+ denotes the set of positive integer

numbers, R+ denotes the set of positive real numbers, Rn denotes the set of n×1 real column vectors, Rn×m

denotes the set of n×m real matrices, Rn×n+ (resp., Rn×n+ ) denotes the set of n× n positive-definite (resp.,

nonnegative definite) real matrices, 1n denotes the n× 1 vector of all ones, and In denotes the n×n identity
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matrix. In addition, we write (·)T for transpose, (·)+ for generalized inverse, λmin(A) and λmax(A) for the

minimum and maximum eigenvalue of the symmetric matrix A, respectively, λi(A) for the i -th eigenvalue of

A, where A is symmetric and the eigenvalues are ordered from least to greatest value, block−diag(A1, . . . , An)

for the block diagonal matrix with A1, . . . , An are square matrices lying along the diagonal and all other

entries of the matrix equal 0, diag(a) for the diagonal matrix with the vector a on its diagonal, [x]i for the

entry of the vector x on the i -th row, and Aij for the entry of the matrix A on the i -th row and j -th column.

In addition, for A ∈ Rn×m, R(A) denotes the range of A, rank(A) denotes the rank of A, N (A) denotes the

null space of A, def(A) , dimN (A) denotes the defect of A.

Next, we recall some basic notions from graph theory and refer to textbooks Refs. 16 and 17 for details.

Specifically, an undirected graph G is defined by a set VG = {1, . . . , N} of nodes and a set EG ⊂ VG × VG
of edges. If (i, j) ∈ EG , then the nodes i and j are neighbors and the neighboring relation is indicated with

i ∼ j. The degree of a node is given by the number of its neighbors. Letting di be the degree of node i,

then the degree matrix of a graph G, D(G) ∈ RN×N , is given by D(G) , diag(d), d = [d1, . . . , dN ]T. A

path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik, k = 1, . . . , L, and a graph G is connected

if there is a path between any pair of distinct nodes. The adjacency matrix of a graph G, A(G) ∈ RN×N ,

is given by [A(G)]ij = 1 if (i, j) ∈ EG and [A(G)]ij = 0 otherwise. The Laplacian matrix of a graph,

L(G) ∈ RN×N+ , playing a central role in many graph-theoretic treatments of sensor networks, is given by

L(G) , D(G)−A(G). The spectrum of the Laplacian of an undirected and connected graph can be ordered as

0 = λ1(L(G)) < λ2(L(G)) ≤ · · · ≤ λN (L(G)) with 1N as the eigenvector corresponding to the zero eigenvalue

λ1(L(G)) and L(G)1N = 0N and eL(G)1N = 1N . Here, we assume that the graph G of a given sensor network

is undirected and connected.

The following lemmas are necessary for the main results of this paper.

Lemma A.1 [Lemma 3, 18]. The Laplacian of a connected, undirected graph satisfies L(G)L+(G) =

IN − 1
N 1N1T

N

Lemma A.2 [Fact 2.10.12, 19]. Let A ∈ Rn×m and B ∈ Rm×l. Then, rank(AB) = rank(A) if and only

if R(AB) = R(A).

Lemma A.3 [Fact 6.4.43, 19]. Let A ∈ Rn×m and B ∈ Rn×l. Then, R(A) ⊆ R(B) if and only if

BB+A = A.

Lemma A.4 [Theorem 2.4.3, 19]. Let A ∈ Rn×m, then N (A) = N (ATA).

B. Proof of Lemma 1

Let H , (1T
N ⊗ In), then (12) becomes

ε = S+HMζ = (HMHT)+HMζ. (75)

It should be noted that

(1T
N ⊗ In)M(1N ⊗ ε) = HM(1N ⊗ ε) = Sε. (76)
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Utilize (75) and (76), the left hand side of (16) can be rewritten as

(1T
N ⊗ In)Mω = (1T

N ⊗ In)M
(
(1N ⊗ ε)− ζ

)
= HM(1N ⊗ ε)−HMζ

= Sε−HMζ

= (HMHT)(HMHT)+HMζ −HMζ

=
(
(HMHT)(HMHT)+HM−HM

)
ζ

= Rζ, (77)

where R ,
(
(HMHT)(HMHT)+HM−HM

)
.

The matrix HM can be rewritten as

HM =
[
k1M1 k2M2 . . . kNMN

]
=

[
k1 diag(m1) k2 diag(m2) . . . kN diag(mN )

]
∈ Rn×Nn. (78)

We now define m̄ , k1m1 + k2m2 + . . . + kNmN , and note that N > 1. Clearly, rank(HM) ≤ n. In

addition, since elements of mi for i = 1, . . . , N are nonnegative and the column vectors of HM are multiples

of e1, e2, . . . , en where ej is the unit vector with the j-th element is 1 and 0 otherwise, m̄ only obtains an 0

element when HM has a zero row. Therefore,

rank(HM) = number of positive elements in m̄

= n− (number of 0 elements in m̄). (79)

Similarly, S can be rewritten as

S = diag(k1m1 + k2m2 + . . .+ kNmN )

= diag(m̄). (80)

Hence, it follows directly that

rank(S) = number of positive elements in m̄

= n− (number of 0 elements in m̄). (81)

From (79) and (81), we have

rank(HM) = rank(S) = rank(HMHT). (82)

Utilize (82) and the result of Lemma A.2 with A , HM and B , HT, we obtain

R(HM) = R(S) = R(HMHT). (83)
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Therefore, it now follows directly from Lemma A.3 that

(HMHT)(HMHT)+HM = HM, (84)

or R = 0. As a result, (16) is now immediate. �
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